Branch Target Buffer - significado y definición. Qué es Branch Target Buffer
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Branch Target Buffer - definición

Branch target buffer; Branch Target Buffer

Branch Target Buffer         
<processor> (BTB) A register used to store the predicted destination of a branch in a processor using {branch prediction}? [Is this correct? Examples?] (1995-05-05)
Branch target predictor         
In computer architecture, a branch target predictor is the part of a processor that predicts the target of a taken conditional branch or an unconditional branch instruction before the target of the branch instruction is computed by the execution unit of the processor.
buffer state         
COUNTRY LOCATED BETWEEN TWO OTHER MUTUALLY HOSTILE COUNTRIES
Buffer State; Buffer states; Buffer republic; Buffer colony
(buffer states)
A buffer state is a peaceful country situated between two or more larger hostile countries.
Turkey and Greece were buffer states against the former Soviet Union.
N-COUNT

Wikipedia

Branch target predictor

In computer architecture, a branch target predictor is the part of a processor that predicts the target of a taken conditional branch or an unconditional branch instruction before the target of the branch instruction is computed by the execution unit of the processor.

Branch target prediction is not the same as branch prediction which attempts to guess whether a conditional branch will be taken or not-taken (i.e., binary).

In more parallel processor designs, as the instruction cache latency grows longer and the fetch width grows wider, branch target extraction becomes a bottleneck. The recurrence is:

  • Instruction cache fetches block of instructions
  • Instructions in block are scanned to identify branches
  • First predicted taken branch is identified
  • Target of that branch is computed
  • Instruction fetch restarts at branch target

In machines where this recurrence takes two cycles, the machine loses one full cycle of fetch after every predicted taken branch. As predicted branches happen every 10 instructions or so, this can force a substantial drop in fetch bandwidth. Some machines with longer instruction cache latencies would have an even larger loss. To ameliorate the loss, some machines implement branch target prediction: given the address of a branch, they predict the target of that branch. A refinement of the idea predicts the start of a sequential run of instructions given the address of the start of the previous sequential run of instructions.

This predictor reduces the recurrence above to:

  • Hash the address of the first instruction in a run
  • Fetch the prediction for the addresses of the targets of branches in that run of instructions
  • Select the address corresponding to the branch predicted taken

As the predictor RAM can be 5–10% of the size of the instruction cache, the fetch happens much faster than the instruction cache fetch, and so this recurrence is much faster. If it were not fast enough, it could be parallelized, by predicting target addresses of target branches.